CO2 is ready to go as a fuel and chemical feedstock

October 2013, Essen, Belgium

Dynamic technological developments – Investors await market incentives
At the beginning of October 2013, 140 leading minds from the world of CCU (carbon capture & utilization) met for three days in Essen at Europe’s largest conference on “CO2 as chemical feedstock – a challenge for sustainable chemistry”.

While carbon dioxide is generally seen as a “climate killer”, which should best be avoided or stored underground (carbon capture and sequestration), a growing number of scientists and engineers are considering how this virtually limitless source of carbon can be used or recycled as a fuel or chemical feedstock. CO2 is an inert molecule that must first be broken down again using energy to make it usable, a process that chemists call “reduction”. If renewable energy is used, this opens up a variety of interesting and environmentally friendly possibilities for storing energy, producing methane and liquid fuels, or making chemicals and plastics. What sounds like a fairytale is well on the way to becoming a reality. Many demonstration facilities and the first commercial plants are already up and running, most of them in Germany.

These feature various key technologies to utilize CO2 as a source of materials and energy. Some of these are “artificial photosynthesis” technologies such as electrolysis and catalytic water splitting, imitating plants which produce biomass in the form of sugar, starch, oils and cellulose from carbon dioxide, water and sunlight. Scientists and engineers would like to develop artificial means of running this process more efficiently and independently of biomass. However, biotechnological techniques also exist to reduce CO2 and make it available for use with the help of special bacteria, for instance. The great advantage of biotechnological techniques is that they do not need purified CO2 but can use CO2 straight from power stations or from industry. This makes the whole process far more viable, even if its overall efficiency is likely to remain below that of electrolysis or catalyzers.  Lastly, CO2 can be directly incorporated into polymers and chemicals without any need for splitting.

As with biomass use, energy in the form of liquid and gaseous fuels has been the main outlet for CO2 use up till now, in part because such uses can lay claim to existing support mechanisms for renewable energy and fuels. The framework conditions for material use are far less advantageous, despite the fact that it offers special processes that render it particularly interesting to use CO2. Carbon dioxide does not necessarily have to be reduced for use in chemical building blocks, but can instead be directly incorporated into chemical structures, partly even into exothermic processes.

Where should the CO2 be taken from?
CO2 is available in sufficient quantities worldwide, but which is the most attractive current source? At present this would appear mainly to be carbon dioxide emissions from fossil-burning power station and industries such as the steel industry, as well as bioethanol plants. These produce large volumes of CO2 that would have to be cleaned so as not to destroy the catalyser or the electrolysis unit. Direct air capture would be the ideal way, as one would not have to resort to large-scale fossil-powered plants but could obtain CO2 as a raw material anywhere on the globe, including places where inexpensive renewable energy is available. This is however still a long way off.

Could CCU be the solution to all our climate and raw material needs, or just a small contribution?
How significant CO2-based technologies could be for protecting the climate and securing raw material supplies s was one of the most keenly debated questions of the entire conference. The observation that non-purified CO2 can be increasingly used (see above) was new to many people, and this immediately adds to its potential.

Over the course of the day, people began to realise that CCS and CCU had fundamentally the same potential and that their potential largely depended on whether the CO2 could be tapped directly from the atmosphere. This would generate almost limitless potential, the only constraint being the quantity of available renewable energy.

Political framework conditions: an incentive to use CO2?
The rate at which CO2 will establish itself as a feedstock depends largely on the political framework conditions, the support measures available to develop it further and the incentives for commercial implementation.
European support has been directed almost exclusively at CCS, and there are a few projects that are part of the bio-based programmes. This is due to change in 2016 with SPIRE (Sustainable Process Industry through Resource and Energy Efficiency), which should explicitly include CCU.

Along with research programmes, the important factor is the political framework conditions that are created for CCU technologies. If DG Energy includes CCU fuels in the Renewable Energy Directive with multiple counting, this could send a powerful signal to investors and give significant impetus to the use of CO2. Further options are being sought to supplement biofuels and electric vehicles. CCU fuels offer one such option that can draw on the endless reserves of CO2.

As the conference clearly demonstrated, new technologies are raring to go, and there are many options that are being developed and are just waiting for implementation. This sleeping giant could come of age faster than politicians and the public imagine, as long as the right direction is set.

You can order all 35 presentations given at the three-day conference for €150 at the following address:
nova-Institut GmbH
Email: contact [at] nova-institut [dot] de